Друкувати цей розділДрукувати цей розділ

Піраміди, їх види та властивості

2. Властивості паралельних перерізів пірамід

Теорема. Якщо піраміда перерізається площиною, паралельною основі, то:

  1. бічні ребра та висота піраміди діляться цією площиною на пропорційні частини;
  2. переріз – многокутник, подібний основі;
  3. площі перерізу та основи відносяться як квадрати їх відстаней від вершини піраміди.

Якщо довільну n-кутну піраміду перерізати площиною, паралельною основі, то ця площина відітне від піраміди многогранник, дві грані якого подібні n-кутники, а інші n граней – трапеції. Цей многогранник називається зрізаною пірамідою.

Паралельні грані зрізаної піраміди називаються основами, а всі інші – бічними. Висотою зрізаної піраміди називається перпендикуляр, проведений з будь-якої точки однієї основи на площину іншої основи.

Зрізана піраміда називається правильною, якщо вона складає частину правильної піраміди. Висота бічної грані правильної зрізаної піраміди, проведена до ребра основи, називається апофемою.

У правильній зрізаній піраміді:

  • бічні ребра рівні;
  • бічні грані рівні;
  • апофеми рівні;
  • двогранні кути при кожній основі рівні;
  • двогранні кути при бічних ребрах рівні;
  • кожна точка прямої, яка проходить через центри її основ, рівновіддалена від усіх вершин кожної основи, рівновіддалена від площини бічних граней, рівновіддалена від прямих, на яких лежать бічні ребра.