Декартові координати у просторі

1. Визначення декартових координат у просторі

     Декартова система координат у просторі задається трійкою попарно перпендикулярних осей (вісь ОХвісь абсцис, вісь ОУвісь ординат, вісь OZ – вісь аплікат), які мають спільний початок О (початок координат) і однаковий масштаб уздовж осей.

     Кожній точці простори за певним правилом ставиться у відповідність трійка чисел – абсциса, ордината та апліката (х;у;z). які називаються декартовими координатами точки. Ці координати визначаються в такий спосіб: через точку А проводимо три площини, паралельні координатним площинам YOZ, XOZ, XOY. Із координатними осями OX, OY, OZ площини перетнуться в точках хА, уА, zA. Число х, абсолютна величина якого дорівнює довжині відрізка ОХА, називається абсцисою точки А. Це число буде додатним, якщо хА належить додатній півосі ОХ, і від’ємним, якщо лежить на від’ємній півосі.

      Аналогічно визначаються ордината у та апліката z точки А.

     Декартові координати у просторі записують у дужках поруч із буквеним позначенням точки А(х;у;z), причому першою в дужках стоїть абсциса, другою – ордината, третьою – апліката.

     Для точок площини ХОY апліката z дорівнює нулю, для точок площини XOZ – ордината у дорівнює нулю, для точок площини YOZ – абсциса х дорівнює нулю.

     Наприклад: точка А має координати 2;3;3, що записується так: А(2;3;3).

     Будь-якій трійці чисел х, у, z відповідає лише одна точка площини А(х;у;z).

     Приклад 1. Задано точки А(1;2;3), В(0;1;2), С(1;0;0), D(1;0;2). Які з цих точок лежать: 1) у площині XOZ; 2) на осі ОХ; 3) у площині YOZ?

Розв’язання

  1. Якщо точка лежить у площині XOZ, то координата у дорівнює 0, у площині XOZ лежать точки С(1;0;0), D(1;0;2).
  2. Якщо точка лежить на осі ОХ, то координата у і z дорівнюють нулю, отже, на осі ОХ лежить точка С(1;0;0).
  3. У площині YOZ лежить точка В(0;1;2).

     Відповідь: 1) С, D; 2) С; 3) В.