Логарифми. Логарифмічна функція. Логарифмічні рівняння, нерівності та їх системи
Логарифми числа
Рівняння , де , має єдиний корінь. Його називають логарифмом числа b з основою а і позначають .
Наприклад: коренем рівняння є число 3, тобто .
Логарифмом додатного числа b за основою а, де а>0, а≠1, називають показник степеня, до якого треба піднести число а, щоб одержати число b.
Розглянемо приклади використання формул 3 – 7. Обчислимо:
Формулу 7 називають формулою переходу до логарифмів з іншою основою.
За допомогою формули 7 можна знаходити логарифми з довільною основою а, маючи таблиці логарифмів, складених для якої-небудь основи b. Найбільш уживаними є таблиці десяткових і натуральних логарифмів.
Десятковими логарифмами називають логарифми за основою 10, позначають lg.
Натуральними логарифмами називають логарифми за основою е (число е – ірраціональне, е≈2,718…), позначають ln.
Дію знаходження логарифма числа (виразу) називають логарифмуванням.
Приклад 1. Прологарифмувати вираз .
Розв’язання
Дію, обернену до логарифмування, називають потенціюванням.
Потенціювання – знаходження числа (виразу) за його логарифмом.
Приклад 2. Пропотенціювати вираз .
Розв’язання